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Lagrangian auto- and cross-correlation functions of the rate of strain s2, enstrophy
ω2, their respective production terms −sij sjkski and ωiωj sij , and material derivatives,
Ds2/Dt and Dω2/Dt are estimated using experimental results obtained through three-
dimensional particle tracking velocimetry (three-dimensional-PTV) in homogeneous
turbulence at Reλ = 50. The autocorrelation functions are used to estimate the
Lagrangian time scales of different quantities, while the cross-correlation functions are
used to clarify some aspects of the interaction mechanisms between vorticity ω and
the rate of strain tensor sij , that are responsible for the statistically stationary, in the
Eulerian sense, levels of enstrophy and rate of strain in homogeneous turbulent flow.
Results show that at the Reynolds number of the experiment these quantities exhibit
different time scales, varying from the relatively long time scale of ω2 to the relatively
shorter time scales of s2, ωiωj sij and −sij sjkski . Cross-correlation functions suggest
that the dynamics of enstrophy and strain, in this flow, is driven by a set of different-
time-scale processes that depend on the local magnitudes of s2 and ω2. In particular,
there are indications that, in a statistical sense, (i) strain production anticipates
enstrophy production in low-strain–low-enstrophy regions (ii) strain production and
enstrophy production display high correlation in high-strain–high-enstrophy regions,
(iii) vorticity dampening in high-enstrophy regions is associated with weak correlations
between −sij sjkski and s2 and between −sij sjkski and Ds2/Dt , in addition to a marked
anti-correlation between ωiωj sij and Ds2/Dt . Vorticity dampening in high-enstrophy
regions is thus related to the decay of s2 and its production term, −sij sjkski .

1. Introduction
The evolution of velocity derivatives in a Lagrangian description, i.e. following a

fluid particle, is of principal importance to the understanding of turbulent transport
processes. The behaviour of fluid particles is of great interest because it describes the
turbulent diffusion and transport mechanisms, which are at the core of dispersion
and mixing processes (e.g. Tennekes & Lumley 1972). Since the work by Taylor
(1921), Lagrangian correlations have been recognized as important statistics in the
study of turbulent diffusion and dispersion (e.g. Monin & Yaglom 1971). While
velocity and acceleration correlations have been exhaustively investigated both
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experimentally and numerically (see Mordant, Leveque & Pinton 2004; Yeung 2002
and references therein), Lagrangian statistics of small-scale turbulence (the fields of
velocity derivatives, rate of strain s2, enstrophy ω2 and the related processes) still
represent an open field of research, owing to the lack of experimental data.

In this contribution we provide an attempt to investigate the processes of strain
and enstrophy production through autocorrelation and cross-correlation functions.
We start with the known aspects of strain and vorticity dynamics, as they are
derived from the transport equations of the total strain, sij sij ≡ s2 and enstrophy, ω2,
respectively:
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Both equations are valid at any time and at any point of the flow domain. They are
derived from Navier–Stokes equations with no further assumptions and are extensively
discussed in Tsinober (2001, Appendix C). The first term on the right-hand side of
(1.1), −sij sjkski , is the local self-amplification process, denoted ‘strain production’. This
term displays a positively skewed probability density function (PDF) and, therefore,
it contributes positively to 〈Ds2/Dt〉 (Tsinober 2001), where 〈·〉 denotes the average
quantity. The second term in (1.1) like the first term in (1.2), ωiωj sij , is associated with
the vortex stretching process, it also displays a positively skewed PDF, and it plays
the role of production in the enstrophy transport equation (1.2). However, enstrophy
production acts not only as a production (in the mean) in (1.2), but also as a drain of
‘energy’ of strain as seen from the (1.1) where it appears with a minus sign. In other
words the enstrophy production is also an agent of exchange of ‘energy’ between
enstrophy and strain.

Obviously, a complete investigation of Lagrangian statistics must also include
the viscous terms (i.e. term 4 in (1.1) and term 2 in (1.2)), and the pressure–strain
interaction, term 3 in (1.1), which are known to be of utmost importance (e.g. Cao,
Chen & Doolan 1999; Brachet et al. 1992; Nomura & Post 1998). Unfortunately,
these terms cannot be accessed experimentally at the present stage of development of
the three-dimensional-PTV measuring system.

Our first task is to study the auto- and cross-correlations of (i) the left-hand-side
terms Ds2/Dt and Dω2/Dt , (ii) the total strain and enstrophy themselves, and (iii)
the production terms −sij sjkski and ωiωj sij . The main goal is to study the interactions
between all these contributions. Our attention is thus on the pointwise relation
between strain and vorticity in terms of strain and enstrophy production, with some
indication of local and non-local interactions (Tsinober 2001). In fact, we can access
the material derivatives Ds2/Dt and Dω2/Dt which also include the effects of the
viscous terms (term 4 in equation (1.1) and term 2 in equation (1.2)) and of the
non-local strain–pressure interaction, term 3 in equation (1.1).

In order to obtain physical insight into the mechanisms that govern the dynamics
of strain and enstrophy in different flow situations and which are convected with the
fluid, it is important to establish the statistics in a Lagrangian way. Fluid particles
introduced into the specific flow situations of high or low strain and high or low
enstrophy, would ‘feel’ the effect in a more persistent way and for a longer time,
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compared to a point, fixed in space and in time (Tennekes & Lumley 1972). This is
the motivation for us to apply Lagrangian correlation as a tool to investigate the in-
teractions between strain, enstrophy, and their production terms, along the trajectories
of fluid particles. A second motivation is to expand the experimental investigation
of Lagrangian correlation by means of three-dimensional-PTV measurements, which
was initiated by Lüthi, Tsinober & Kinzelbach (2005). Consistently with the previous
works we will provide, along with unconditioned, conditioned statistics on strain
and enstrophy magnitude. The use of conditioned statistics is also suggested by the
results of Martin et al. (1998), Ooi et al. (1999), Jeong & Girimaji (2003) and Lüthi
(2002), where the issue of a statistical mean cycle of evolution in the (R, Q)-plane in
statistically stationary homogeneous turbulence (implying steady values for 〈s2〉 and
〈ω2〉) was addressed. R and Q are the second and third invariants of the local velocity
gradient tensor ∂ui/∂xj , respectively. They define a phase space (R, Q-plane) where
the real/complex nature of the eigenvalues of ∂ui/∂xj is pointwise related to both the
local topology of the flow (see Chong & Perry 1990) and the small-scales processes
involving strain, enstrophy and their production terms (Tsinober 2000 and Chacin &
Cantwell 2000). Since R and Q are respectively equal to − 1

3
(sij sij sij + 3

4
ωiωj sij ) and

1
4
(ω2 − 2s2), it is likely that a cyclic sequence of production–destruction processes, in

a statistical sense, may exist for ω2 and s2 also. It is quite common and natural to
expect that the processes of enstrophy and strain production would depend on the
level of strain and enstrophy. Therefore, for instance, in high-strain and low-enstrophy
regions, there is hope of obtaining a set of portions of trajectories, which is large
enough to be used to address statistically the question of how strain will decrease and
how vorticity will increase. This gives further support to the decision to condition
trajectory subsets, and thus correlation functions, on ω2 and s2.

This investigation is possible due to the recently developed three-dimensional-PTV
measuring system. The intrinsic characteristics of particle tracking velocimetry made
this system the most suitable tool to address issues related to the evolution of turbulent
quantities along particle trajectories. This is due to two major capabilities of three-
dimensional-PTV: (i) it allows measurements in a three-dimensional flow domain
and estimation of the full tensor of velocity derivatives ∂ui/∂xj , and (ii) it allows
estimation of material derivatives through differentiation of any measured quantity
along a particle trajectory. In the present contribution we use the data obtained by
Lüthi et al. (2005) in homogeneous turbulence at the Taylor-microscale Reynolds
number Reλ = 50. The description of the experimental set-up and the characteristics
of the three-dimensional-PTV measuring system can be found in Lüthi et al. (2005).

It is worth mentioning the three major limitations of the three-dimensional-PTV,
and of the experimental assessment of Lagrangian correlations in general, to the
best of our knowledge. The first is related to the limited capability to obtain a
large sample of long trajectories in order to provide an objective estimate of the
correlation functions. This is the main reason why we concentrate on the small scales
of turbulence and we focus on the short-time interactions between the investigated
processes. The second limitation is related to the accuracy required to resolve the
velocity derivatives at the Kolmogorov scales. This imposes an additional restriction
on the largest resolvable scale of the flow. Therefore it is difficult to study at the same
time the small-scale interactions and the Lagrangian time scales up to the integral
scales. The third limitation is of technical nature, which, at the present stage of
development of three-dimensional-PTV, prevents an investigation of higher Reynolds
number flows. We should point out that the results presented here need to be validated
in further experiments and possibly by numerical simulations.
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The paper is organized as follows. In § 2 the issues concerning the estimation of cor-
relation functions from finite samples are presented and three different estimators are
introduced. Section 3 is dedicated to the experimental results. First, the autocorrelation
functions are shown and the Lagrangian integral time scales of the various quantities
of interest are estimated. Second, the trajectory subsets conditioned on strain and
enstrophy magnitudes are introduced and their effect on the autocorrelation functions
is discussed. Third, the full set of unconditioned and conditioned cross-correlation
functions is presented and interpreted, with particular emphasis on the comparison
between the three different estimators. A discussion and conclusions follow.

2. Numerical procedure
Obtaining Lagrangian correlation from experimental data available through three-

dimensional-PTV has some intrinsic difficulties due to the limited spatial extent of
our measuring volume (side length of the order of 10 Kolmogorov length scales), and
due to the dependence of the spatial resolution on the mean inter-particle distance.
Higher spatial resolution requires an increasing number of tracing particles. The
linking efficiency depends mainly on the ratio between the mean particle displacement
between two consecutive frames and the mean inter-particle distance within the same
frame (see Lüthi et al. 2005). Therefore, for high velocity or high acceleration, where
the particle displacement increases significantly, we have to cope with a decrease in
the linking efficiency and an increased probability of losing particles, thus limiting the
lengths of the obtained trajectories. The main drawback, though not new (see for
example, Mordant et al. 2004) is that the recorded long trajectories are likely to
belong to a biased subset of weak turbulence. We will show below that different
parameters and estimators of correlation functions can be used to quantify the bias
associated with the varying length of the trajectories. The first estimator is a biased
estimator (Priestley 1981) defined

ρXY (τ ) =

1

N

∑
N

RXY (τ )

[Var(X)Var(Y )]1/2
(2.1)

where RXY denotes the covariance of the two Lagrangian quantities X and Y along
a single trajectory formed by Nti linked points:

RXY (τ ) = 〈(X(t + τ ) − µX)(Y (t) − µY )〉Nti
. (2.2)

Note that the sum in equation (2.1) is operating along the whole set of N trajectories,
and the variance Var(X) and the mean µX , are defined as:

µX =
1

Np

∑
Np

X, Var(X) =
1

Np

∑
Np

(X − µX)2 (2.3)

where Np is the total number of points obtained by counting all the points of all
individual trajectories, i.e. Np =

∑
N Nti

The estimator given in equation (2.1), is significantly influenced, as we show here,
by two parameters: the number of linked points (in time) forming each trajectory
Nti (which varies for different trajectories), and the maximum time lag, denoted here
as M .

Each particle is tracked for a time interval of Lti = Nti�t (where �t = 1/60 s is the
temporal resolution of the cameras). In the following we refer to the time interval
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Lti as the trajectory length. It is normalized with the Kolmogorov time scale τη. The
maximum time lag M is the necessary parameter that we introduce in order to be
able to sum the contributions of all trajectories. For the estimation of the Lagrangian
integral time scales, M has to be longer than the time scale of the investigated
quantities, implying that short trajectories cannot be used for this purpose. On the
other hand, a set of long trajectories may not be large enough for the correlations to
converge and, as we have mentioned, may also bias the results towards the behaviour
of weakly turbulent regions. We shall demonstrate how a properly chosen maximum
lag M and a sufficiently large subset of long trajectories (i.e. longer than M) reduce
the aforementioned bias.

We compute the Lagrangian correlation functions by using different subsets of
trajectories, each subset having a different minimum trajectory length threshold,
ranging from 4τη to 14τη. In order to sum all the contributions to the correlation
function ρXY (τ ), the time lag τ was chosen to span a fixed range [−M : M] for all
trajectories. First, we show in figure 1(a–c) mean and variance values of some of the
investigated quantities for the different thresholds. In this figure we depict the mean
values µX̂ and variances Var(X̂) of the respective quantities, calculated on a subset

of trajectories longer than the prescribed threshold, e.g. X̂(τ/τη = 4) = X(Lti/τη > 4),
and normalized with the mean (µX) and variance (Var(X)) of the whole dataset. As
we mentioned above, the bias of long trajectories towards weaker values is the main
drawback of Lagrangian measurements and can be seen in figure 1(a–c). Second, we
show in figure 1(d–g) auto- and cross-correlation functions calculated with the first
estimator ρXY . Each curve represents the correlation function computed on a trajectory
subset which comprises trajectories longer than a certain threshold, as defined above
as a function of τη. Though the dependence on the trajectory length is visible, mostly
for the tails in the autocorrelation curves of the long-scale processes (e.g. velocity), the
qualitative behaviour of the depicted functions is not significantly affected. For the
short-scale processes (figure 1f, g), the bias is substantially weaker. We acknowledge
here that the correlation functions of the long-scale processes could be underestimated.

An intrinsic difficulty in the Lagrangian analysis is that the time series of any
quantity of interest, along each single trajectory of finite length, are not likely to
display zero average, thus causing a bias in the correlations calculated through
estimator ρXY . In order to overcome this problem, we propose a second estimator
ρXY (τ ) defined as

ρXY (τ ) =
1

N

∑
N

[
〈(X(t + τ ) − µ(X)t i)(Y (t) − µ(Y )t i)〉

[Var(X)t iVar(Y )t i]1/2

]
(2.4)

where

µ(X)t i =
1

Nti

∑
Nti

X, Var(X)t i =
1

Nti

∑
Nti

(X − µ(X)t i)
2. (2.5)

This estimator is the average of N correlation functions, each calculated along
a trajectory and normalized using the average µ(X)t i and variance Var(X)t i of the
trajectory. We should stress that, though µ(X)t i , calculated on single trajectories,
can vary significantly, the average over the whole N trajectories is equal to µX

computed on the whole dataset. Averaging different correlation functions implies
that each trajectory gives the same contribution to the averaged ρXY (τ ) regardless
of its variance. Therefore, strong events which are reflected in some trajectories and
significantly affect RXY (τ ) contribute with a different weight (i.e. variance) to the
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Figure 1. Mean µX̂ (�) and variance Var(X̂) (�) values of (a) the velocity magnitude, (b) ens-
trophy, and (c) strain, calculated for different thresholds of the minimum trajectory length,
and normalized with the corresponding value for the whole dataset. Lagrangian correlation
functions for different thresholds of the minimum trajectory length ((d) autocorrelation of one
velocity component, (e) strain, (f ) cross-correlations ρs2,Ds2/Dt , (g) ρω2,Dω2/Dt ).

aforementioned estimators ρXY (τ ) and ρXY (τ ). In order to single out the effect of the
different weighting, we propose a third estimator which combines the principles of
the first two, using the averages of single trajectories but without normalizing the
covariances for each trajectory:

ρ̂XY (τ ) =

∑
N

〈(X(t + τ ) − µ(X)t i) · (Y (t) − µ(Y )t i)〉∑
N

[Var(X)t iVar(Y )t i]
1/2

(2.6)
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Figure 2. Lagrangian autocorrelation functions of (a) the three velocity components,
(b) strain and enstrophy, (c) strain and enstrophy production terms and (d) strain and
enstrophy material derivatives.

As we will show, equations (2.4) and (2.6) lead to similar results if we exclude from
the whole dataset the trajectories which display high variances Var(X)t i .

The next section is devoted to the presentation of the results. We first show
autocorrelation functions ρXX(τ ) and derive the Lagrangian time scales of the different
quantities of interest. This is done in order to discuss the differences between the results
of the three estimators in the case of cross-correlation functions. Note that the second
and the third estimators are used in the specific context of estimating cross-correlation
from the experimental dataset of trajectories of finite length. The main point is to
provide a tool to clarify the behaviour of small-scale processes under the effect of
strong events (with large variance).

3. Results
3.1. Lagrangian autocorrelation functions

We show in figure 2 the one-side autocorrelation functions, ρXX(τ ), estimated using
equation (2.1). We note from figure 2(b) that enstrophy and strain exhibit longer
Lagrangian correlation time scales than the respective production terms (figure 2c).
In addition, ω2 exhibits a longer time scale than s2, which is in agreement with
the results of Yeung & Pope (1989) and Pope (1990) and with the experimental
observation of Andreotti, Douady & Couder (2001) in which the intrinsic instability
of pure strain regions is pointed out. Also, the strain production −sij sjkski manifests
a shorter correlation with respect to the enstrophy production ωiωj sij (figure 2c). In
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Tu Tv Tw Tω2 Ts2 Tωωs Tsss TDω2/Dt TDs2/Dt

3.7 3.6 3.7 3.6 2.6 2.5 1.7 0.7 0.4

Table 1. Lagrangian integral time scales of the quantities of interest, normalized with the
Kolmogorov time scale, τη as estimated from the autocorrelation functions in figure 2.

table 1 we report the Lagrangian integral time scales TX of the quantities of interest,
computed as an integral of the correlation function ρXX(τ ), normalized with the
Kolmogorov time scale, τη. We acknowledge that we underestimate the Lagrangian
integral time scale of enstrophy compared to the results of Yeung (2001) (Tω2 = 5.32
at Reλ = 38) and Yeung & Pope (1989) (Tω2 = 5.66 at Reλ =54). This is due to the
limited length of our trajectories compared to the time scale of enstrophy, combined
with the effect of the biased estimator. For the same reason, we also underestimate
the Lagrangian integral time scale of the velocity components. However, our estimate
of Ts2 is much closer to the one provided by these authors (2.81 at Reλ =38 and 2.95
at Reλ =54). This means that we are also able to capture the shorter-scale processes
that we are mostly interested in, such as strain and enstrophy production (figure 2c).

Comparing figures 2(c) and 2(d), we observe that enstrophy production ωiωj sij is
a slower process compared to the material derivative of enstrophy, Dω2/Dt . From
this we infer that the effect of the viscous term is not negligible for the short-term
interaction of the order of the Kolmogorov time scale, τη (see also Lüthi et al. 2005).
Similar conclusions can be drawn by comparing the autocorrelation curves of the
strain production term at short time lags with the curve of the material derivative
Ds2/Dt . It is noteworthy that in the ideal case of stationary homogeneous turbulence
in unbounded space the autocorrelations of Dω2/Dt and Ds2/Dt should provide
zero integral time scale (see e.g. Monin & Yaglom 1971). However the statistical
homogeneity and stationarity of the flow (in the Eulerian sense) is not reflected
equivalently by a limited subset of long trajectories. Consequently the Lagrangian
integral time scales of Dω2/Dt and Ds2/Dt are expected to be small at best.

Despite the limitations in the estimate of the Lagrangian integral time scales dis-
cussed above, we stress that the qualitative behaviour of the autocorrelation functions
of the quantities of interest are in agreement with the numerical and experimental
results in the literature. For example, the enstrophy autocorrelation function is very
similar to that of the velocity component (though both underestimated), in agreement
with the results of Yeung (2001), at similar Reλ. Therefore we emphasize only the
comparative analysis of the autocorrelation curves presented which indicates that
different processes contribute to the transport equations of strain and enstrophy (1.1)
and (1.2) with different time scales.

3.2. Conditioned autocorrelation functions

The main purpose of the conditioned autocorrelation function analysis is to study
the scales of the processes in the regions of qualitatively different levels of strain
and enstrophy. On the one hand the portion of trajectories along which s2 and ω2

can satisfy certain conditions based on their respective magnitudes (e.g. high-strain,
high-enstrophy) are expected to be shorter than the integral time scales of strain and
enstrophy. On the other hand the minimal length of the portion of the trajectory
used for this analysis cannot be much shorter than the time scales of the processes
under investigation (e.g. strain production). As we learn from the results shown above
(figure 2 and table 1), at this low Reynolds number flow, the autocorrelation functions
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Figure 3. Lagrangian autocorrelation of (a) ωiωj sij , (b) sij sjkski , (c) Dω2/Dt and

(d) Ds2/Dt , conditioned on the strain and enstrophy distribution.

of strain and enstrophy production terms and of their material derivatives display
small values within 3τη (e.g. ρsss is approximately 0.2 at τ = 2.5τη, in figure 2c). This
implies that 2.5τη could be used as a reasonable compromise for the minimal length
of the trajectory used for the following conditional analysis.

The conditioned autocorrelation functions of −sij sjkski , ωiωj sij , Ds2/Dt and
Dω2/Dt are computed for the four cases: (i) high-strain–low-enstrophy, (ii) high-
strain–high-enstrophy, (iii) low-strain–high-enstrophy, (iv) low-strain–low-enstrophy.
We also define the threshold values that correspond to ‘high’ and ‘low’ values for
enstrophy and strain in two ways: (a) taking into account the distributions of s2

and ω2, ‘high’ and ‘low’ are defined such as to include the top and bottom 30 % of
their distributions respectively (figure 3); (b) ‘high’ and ‘low’ are defined as larger and
smaller than the mean values µω2 and µs2 , respectively (figure 4). While the latter is
more commonly used, the former takes into account the fact that the distributions of s2

and ω2 are not Gaussian. Therefore we believe that both conditions are representative
and useful in this context. As we show below, in our flow the two sets of conditioned
correlation functions show similar trends, though in the first case the differences
between the four conditions are more evident. It is also clear that the more strict
the condition is, the fewer satisfactory trajectory portions can be found and the less
representative are the related statistics.

We show in figures 3(a, b) and 4(a, b) the one-sided autocorrelations of the enstrophy
and strain production terms, computed with the four different conditions defined
above. We note that in high-strain–low-enstrophy regions, enstrophy production
exhibits the shortest autocorrelation and we infer that this is possibly due to shear
instabilities which are apparently higher in these regions as pointed out by Vincent &
Meneguzzi (1994) and Andreotti et al. (2001). Moreover, ωiωj sij manifests the slowest
decay in the case of high-enstrophy–low-strain. This can be related to the idea of
Constantin (1994) who inferred that in high-enstrophy regions viscosity contributes
to the formation of spatially coherent vorticity resulting in a slow dampening of
intense vortex filaments (see also the longer scale of Dω2/Dt in figure 3c). In the case
of strain production −sij sjkski , the differences are less marked which is consistent with
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Figure 4. Lagrangian autocorrelation of (a) ωiωj sij , (b) sij sjkski , (c) Dω2/Dt and

(d) Ds2/Dt , conditioned on strain and enstrophy magnitude.

the fact that strain production is a self-amplification process (Tsinober 2001). The
shortest correlation is found for low-strain–high-enstrophy. We can infer that this is
due to the effect of both the low-strain condition and the preferential high rotation
of the eigenframe of the rate of strain tensor in high-enstrophy regions (Guala et al.
(2005)). This might also explain why −sij sjkski manifests a similar behaviour in the
conditions of high-strain–low-enstrophy and low-strain–low-enstrophy.

In figures 3(c, d) and 4(c, d) the one-sided autocorrelation of the material derivatives
of enstrophy and strain are shown. By comparing figures 3(a) and 3(c) (or figures 4(a)
and 4(c), we note that Dω2/Dt becomes less correlated in low-enstrophy–high-strain
regions, where the production term ωiωj sij also manifests the shortest correlation.
The same is true in the case of high-enstrophy–low-strain, where both Dω2/Dt and
ωiωj sij show the slowest decay.

The fact that Ds2/Dt and Dω2/Dt autocorrelations decay faster than the respective
contributing production terms (shown in figure 3a, b) suggests that the strain–pressure
and the viscous terms (terms 3 and 4 in equation (1.1), term 3 in equation (1.2)) have
a significant effect on the dynamics of the total strain and enstrophy.

3.3. Cross-correlation functions

We proceed to the estimation of unconditioned Lagrangian cross-correlation functions
shown in figure 5. The main focus of the present section is to single out some aspects
of the interaction between strain and enstrophy, regardless of their magnitude, and
to discuss the effects of the different estimators on the correlation functions.

We observe different shapes of the cross-correlation curves of different quantities:
in the case of ρω2,s2 the highest correlation value is at τ = 0 (figure 5a); ρs2,Ds2/Dt

and other curves in figure 5(b, c) show weak correlation at τ = 0 and the peak is
shifted by a certain time lag. Here we interpret the latter shape as evidence of a
‘cause-consequence’ relationship between the first quantity in our notation (e.g. s2 in
ρs2,Ds2/Dt ) and the second quantity. This means that, for example, s2 ‘follows’ Ds2/Dt

or, in other words, high and positive Ds2/Dt induces high s2 after roughly 2τη. This
is also true in the opposite direction, for instance negative slope of s2 (Ds2/Dt < 0)
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Figure 5. Lagrangian cross-correlation functions between different processes involving
strain and enstrophy (computed through the estimator ρXY , equation (2.2)).

at τ = −2τη statistically leads to s2 < µs2 ; if this is not the case (e.g. for ρDω2/Dt,Ds2/Dt )
it means that the ‘cause–consequence’ relationship is statistically relevant only in
one direction, e.g. Ds2/Dt induces Dω2/Dt . Here we can discuss causal relationships
because the quantities under investigation are related by equations (1.1) and (1.2),
and also because strain and enstrophy are parts of the same velocity gradient tensor.
A more subtle interpretation of the cross-correlation functions concerns the case in
which the highest correlation value is at τ = 0, and the curve is skewed to one of the
sides. For example, the skewness and the shift of the peak of ρω2,s2 towards positive
time lag, as reported by Yeung & Pope (1989) and Mordant et al. (2004), suggests
that ω2 tends to increase with time after the action of strain, due to the statistical
prevalence of vortex stretching over vortex compression.

In our results (figure 5a) we note that ω2 and s2 manifest positive correlation
coefficients (ρω2,s2 (τ =0) ≈ 0.5), which is in agreement with the numerical results of
Yeung & Pope (1989) and Mordant et al. (2004). However, we do not observe
skewness or the shift of the peak of this cross-correlation function. The same level of
correlation, at zero time lag, is observed in figure 5(a) between ωiωj sij and −sij sjkski ,
while Dω2/Dt and Ds2/Dt are correlated only after a certain time lag (figure 5d).
In addition, from the cross-correlation functions between ωiωj sij and Dω2/Dt and
between −sij sjkski and Ds2/Dt , we can infer that the shifted peak of the cross-
correlation after a certain time lag is more evidence of the non-local effects on the
material derivatives caused by the additional terms in equations (1.1) and (1.2). This
shift is even more pronounced in the case of ρ−sss,Ds2/Dt possibly due to the effect of
the strain–pressure term in equation (1.1).

Before proceeding further with the physical interpretation of our results, we should
to stress the effects that different correlation estimators have on the cross-correlation
functions. The cross-correlation functions presented in figure 5 are computed using the
estimators ρXY (τ ), equation (2.4), and ρ̂XY (τ ), equation (2.6), and shown in figures 6
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Figure 6. Lagrangian cross-correlation functions between different processes involving strain
and enstrophy, computed through ρXY , averaging single trajectory correlation functions, as
described in equation (2.4)).
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Figure 7. Lagrangian cross-correlation functions between different processes involving strain
and enstrophy, computed through ρ̂XY biased correlation subtracting each trajectory’s mean,
equation (2.6)).

and 7, respectively. As we have shown in § 3.1, ω2 and s2 exhibit long autocorrelation
curves, with tails that approach zero correlation values at roughly 10τη (corresponding
to roughly 2 to 3 times their integral time scales; see table 1). By using the first
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estimator we have a situation in which s2 and ω2 along some of the trajectories
are more than twice their means µs2 and µω2 , respectively. In this case ρXY will be
significantly biased towards positive values, regardless of the mutual evolution of
s2(τ ) and ω2(τ ) along the particle trajectory. In other words, assuming for example
that both s2 and ω2 behave along a trajectory as perfect sines with high mean values
µs2

t i
, µω2

t i
and with a certain phase delay between them, their cross-correlation curve

will look like any autocorrelation curve, with no information about the phase shift, i.e.
their mutual evolution. An analogous situation occurs for ωiωj sij and −sij sjkski , which
also present positive mean values and positively skewed PDFs. Their cross-correlation
ρωωs,−sss is again biased towards positive values.

We should also note that each trajectory contributes to 〈(X(t)−µX)(Y (t + τ )−µY )〉
with a different weight, depending on how much µXti

differs from µX . Therefore, strong
turbulent events (say, high s2–high ω2), though rare, may contribute significantly to
〈(X(t) − µX)(Y (t + τ ) − µY )〉 and enhance the bias mentioned above. This is, however,
expected to be more pronounced for the quantities that have an integral time scale
comparable to the minimal trajectory length used in the correlation analysis, such
as ω2 and s2, rather than their production terms or their derivatives, which exhibit
shorter integral time scales. In other words, the probability of finding a long portion
of trajectory where s2(τ ) > µs2 is higher than the probability of finding a long portion
where −sij sjkski(τ ) > 〈µ−sss〉.

Using the second estimator ρXY (equation (2.4)), strain and enstrophy exhibit a
vanishing correlation, shown as solid line in figure 6a). ρωωs,−sss , though affected,
maintains some correlation, while the other (shorter-scale) processes, involving the
material derivatives (figure 6b, c), remain unchanged if compared to figure 5(b, c).
As we expected, the correlation curves calculated from equation (2.4), the second
estimator ρXY , for the longer-scale processes are significantly different from the
respective ones calculated with the first estimator ρXY . This is due to the ‘over-
estimation’ bias of ρXY caused by strong events as discussed above.

We are aware that by assigning to the contribution of each trajectory the same
weight in the second estimator, i.e. averaging all the single correlation coefficients,
we obtain the averaged correlation curves ρXY that represent the ‘most common’
(not necessarily the ‘true’) behaviour. The difference between the most common
and the true behaviour is related to the effect of the co-occurrence of high-strain
and high-enstrophy for a relatively long portion of the trajectory, which was for
example reported by Zeff et al. (2003). In order to single out this effect we compute
the cross-correlation ρXY (equation (2.2)) between strain and enstrophy excluding a
certain percentage of trajectories characterized by high-strain and high-enstrophy.
In particular we set a condition on the contribution to the variance of each single
trajectory (Var(s2)t i or Var(ω2)t i). Dataset A includes all the trajectories and two other
datasets have been created for comparison. In dataset B we exclude the top 5 % of
the trajectories sorted according to their variance. Dataset C, which excludes 15 % of
those displaying highest strain or enstrophy variance, is the moderate set. In figure 8
we show the cross-correlation between ω2 and s2 and between ωiωj sij and −sij sjkski

for the three different datasets.
We observe that the peak of the correlation curves becomes lower when going

from set A to B and C, especially for ω2 and s2. Apparently, this effect is due to the
contribution to the positive ω2 and s2 cross-correlation, given by some strong and rare
events. We infer that the influence of strong events is observed less for the correlation
between the production terms since their time scales are shorter: in fact a trajectory
10τη long is likely to be influenced by strong production events only for a short time.
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Figure 8. Lagrangian cross-correlation functions between (a) strain and enstrophy, and
(b) their production terms ωiωj sij and −sij sjkski , computed using equation (2.2), estimator
ρXY on three different datasets: A (continuous line) whole set of trajectories, B (− − −)
3 % high-strain (or high-enstrophy) trajectories excluded, C (· · ·) 14 % high-strain (or high
enstrophy) trajectories excluded.

We expect the third estimator ρ̂XY (equation (2.6)) to overcome, at least in part, some
of the bias present in the first two estimators, because it is taking into account the
effect of rare and strong events by weighting the contribution of each trajectory to
RXY with its own variance. The results shown in figure 7 support this expectation: the
peak of the cross-correlation function between ω2 and s2 is lower in figure 7(a) than
figure 5(a), while the other curves (with shorter time scales) depict the same behaviour
as shown in figure 5. In order to strengthen our interpretation of the effect of the
estimators, we carry out a comparative analysis between the second and the third
estimators on the full and the ‘tame’ datasets (A and C respectively). The results are
shown in figure 9. As anticipated, ρXY is not affected by the strong events as shown
by comparing figures 9(b) and 9(d). It is striking that for the tame dataset, ρXY and
ρ̂XY show exactly the same shape. In addition, the comparison between figures 9(a)
and 9(c) implies that the only contribution to the positive cross-correlation between
strain and enstrophy at τ =0 is from rare and strong events and it is thus due to the
overestimation bias.

From the analysis of the three different estimators we conclude that, in case of
trajectories of finite length, all three are necessary for a meaningful interpretation
of the correlation results. Enstrophy and strain at zero time lag behave quite
independently (in the sense that they show vanishing correlation in the ‘most common’
case), in other words most of the time they are not ‘in phase’. Nevertheless, they are
positively correlated (shown by estimators 1 and 3) due the contribution by rare
events in which both quantities are high (still with no implication of being in phase
or not), due to the overestimation bias. Because of the events in which both s2 and ω2

are high, one can assume that there is a probability that they grow simultaneously,
but then we would observe a positive correlation at τ = 0 between Dω2/Dt and
Ds2/Dt , which does not seem to be the case (regardless of the estimator). As is also
expected, ωiωj sij and −sij sjkski maintain a degree of correlation in time, regardless
of the type of estimator we use. The fact that enstrophy and strain are not in phase,
Dω2/Dt and Ds2/Dt are not correlated at zero time lag, but the processes of strain
and enstrophy production often occur at the same location, and at the same time, is
another strong indication that non-local processes play an important role in strain
and enstrophy dynamics. In order to address some further questions, such as the
effect of positive ωiωj sij on the evolution of strain, in the next section we investigate
the cross-correlation functions under the four conditions.
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Figure 9. Lagrangian cross-correlation functions between strain and enstrophy (and their
production terms), computed using: (a) estimator ρ̂XY on dataset A, (b) estimator ρXY on
dataset A, (c) estimator ρ̂XY on dataset C, (d) estimator ρXY on dataset C. Note that
non-weighted contributions are not affected by the presence of strong events (b, d), while
weighted contributions (a, c) show weaker correlation for the ‘tamer’ set of trajectories. In the
latter case, consistently, the two procedure give the same results (c, d).

3.4. Conditioned cross-correlation functions

Similarly to the analysis in § 3.2 we use the following conditions: i) high-strain–
low-enstrophy ii) high strain–high-enstrophy, iii) low-strain–high-enstrophy, iv) low-
strain–low-enstrophy. As for conditioned autocorrelation functions, two sets of cross-
correlation functions are shown, following the different criteria that define the ‘high’
and ‘low’ conditions. In particular, figures 10, 11 and 12 were estimated with a
threshold value chosen such as to include only the bottom or top 30 % of the strain
and enstrophy distributions respectively. In the curves shown in figures 13–15, ‘high’
and ‘low’ conditions are defined as larger and smaller than the mean value.

In figures 10 and 11 we show the cross-correlation functions between the terms
under investigation. In each figure four different line types depict the four different
conditions. The results of the estimators 1, 2 and 3 are given from left to right,
respectively. It is noteworthy that, regardless of the estimator employed, the shapes of
the conditioned correlation functions in figures 10 and 11 exhibit the same qualitative
behaviour. It is also observed for the other cross-correlation functions, which are
shown in figure 12 for the first estimator only. We observe that strain and its
production term are well-correlated (ρs2,−sss(τ = 0) ≈ 0.5) especially when strain is
high (solid line and line with dots). It is interesting that they are also well-correlated
when both strain and enstrophy are weak, and only under high-enstrophy–low-
strain condition does this correlation vanishes. This might be related to the shorter
autocorrelation time scale exhibited by −sij sjkski under the same conditions (see
figure 3) and possibly due to the effect of the increased rotation of the strain
eigenframe in vorticity-dominated regions.
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Figure 10. Lagrangian cross-correlation functions ρs2,−sss and ρωωs,Ds2/Dt for conditioned
trajectory samples: high-strain–low-enstrophy (—), high-strain–high-enstrophy (-•-•-•-),
high-enstrophy–low-strain (·−·−·), low-enstrophy–low-strain (· · ·). Correlations are computed
following the three procedures: (a, d) ρXY (τ ), (b, e) ρXY (τ ), (c, f ) ρ̂XY (τ ).

–2 0 2
–0.1

0

0.1

0.3

0.2

–2 0 2
–0.2

–0.1

0

0.1

0.2

–2 0 2
–0.2

–0.1

0

0.1

0.2

–2 0 2
–0.2

–0.1

0

0.2

0.1

τ/τη τ/τη τ/τη

–2 0 2

–0.2

–0.4

0

0.4

0.2

–2 0 2
–0.2

–0.1

0

0.1

0.2

(a) (b) (c)

(d) (e) ( f )

ρ
–s

ss
,D

s2 /
D

t
ρ

ω
ω

s,
D

ω
2 /

D
t

Figure 11. Lagrangian cross-correlation functions ρωωs,Dω2/Dt and ρ−sss,Ds2/Dt for conditioned
trajectory samples: high-strain–low-enstrophy (—), high-strain–high-enstrophy (-•-•-•-), high-
enstrophy–low-strain (·−·−·), low-enstrophy–low-strain (· · ·). Correlations are computed fol-
lowing the three procedures: (a, d) ρXY (τ ), (b, e) ρXY (τ ), (c, f ) ρ̂XY (τ ).

In high-enstrophy–low-strain regions we discover that the enstrophy production
term is locally correlated with the material derivative of enstrophy (figure 11a–c),
but also significantly negatively correlated with the strain derivative meaning that, in
high-enstrophy regions, positive vortex stretching is associated with the decrease of
s2 (figure 10d–f ).

In our interpretation, the high-enstrophy–low-strain regions are essentially different
from the rest of the flow regions. We notice that under all other conditions, the peak
of the correlation functions between ωiωj sij and the material derivatives is shifted
towards non-zero time lags (different types of the correlation function suggest different
types of interaction). The non-zero time lag is an important difference between the
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Figure 12. Lagrangian cross-correlation functions ρω2,ωωs , ρs2,ωωs , and ρωωs,sss for conditioned
trajectory samples: high-strain–low-enstrophy (—), high-strain–high-enstrophy (-•-•-•-),
high-enstrophy–low-strain (·−·−·), low-enstrophy–low-strain (· · ·). Correlations are computed
using the estimator ρXY (τ ).
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Figure 13. Lagrangian cross-correlation functions ρs2,−sss and ρωωs,Ds2/Dt for conditioned
trajectory samples (larger, smaller than the mean): high-strain–low-enstrophy (—), high-strain–
high-enstrophy (-•-•-•-), high-enstrophy–low-strain (·−·−·), low-enstrophy–low-strain (· · ·).
Correlations are computed following the three procedures: (a, d) ρXY (τ ), (b, e) ρXY (τ ), (c, f )
ρ̂XY (τ ).

cross-correlation functions of ρωωs,Dω2/Dt and ρ−sss,Ds2/Dt (compare figure 11(a–c) and
figure 11(d–f )). On the one hand, it is a commonplace that in strain-dominated
regions the derivative of enstrophy (which is not directly connected to the strain in
its equation (1.2)) is correlated with the enstrophy production after a certain delay
in time. On the other hand it is interesting to note that −sij sjkski and Ds2/Dt are
more correlated at τ �= 0, and under all conditions. This is another clear indication
that non-local effects are intimately associated with strain growth.

In figure 12(a) ρω2,ωωs in high-strain–low-enstrophy regions (solid line) displays a
significant correlation of about 0.5 at τ = 0 and it is less skewed compared to the curves
for the other conditions (similar to the results in figure 13(a). The lack of skewness
suggests that vortex stretching in high-strain–low-enstrophy regions is not as efficient,
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Figure 14. Lagrangian cross-correlation functions ρωωs,Dω2/Dt and ρ−sss,Ds2/Dt for conditioned
trajectory samples (larger, smaller than the mean): high-strain–low-enstrophy (—), high
strain–high-enstrophy (-•-•-•-), high enstrophy–low-strain (·−·−·), low-enstrophy–low strain
(· · ·). Correlations are computed following the three procedures: (a, d) ρXY (τ ), (b, e) ρXY (τ ),
(c, f ) ρ̂XY (τ ).
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Figure 15. Lagrangian cross-correlation functions ρω2,ωωs , ρs2,ωωs , and ρωωs,sss for conditioned
trajectory samples (larger, smaller than the mean): high-strain–low-enstrophy (—), high-strain–
high-enstrophy (-•-•-•-), high-enstrophy–low-strain (·−·−·), low-enstrophy–low-strain (· · ·).
Correlations are computed using the estimator ρXY (τ ).

statistically, as in the case of high-strain–high-enstrophy. Therefore we can infer that
the high-strain–low-enstrophy flow regions are the result of the self-amplification
of strain (i.e. −sij sjkski) with no or little effect on enstrophy production. This is
supported by the two other trends: (i) in low-strain–low-enstrophy ρs2,−sss(τ = 0) is
as significant as in high-strain conditions (figure 10a–c), implying that ρs2,−sss shows
significant correlation as long as enstrophy is low; (ii) in high-strain–low-enstrophy
regions the correlation between ωiωj sij and −sij sjkski is weak (figure 12c), implying
that enstrophy production in high-strain–low-enstrophy regions is not correlated with
strain production. We also observe that, when strain is low, ρs2,ωωs and ρω2,ωωs are



Lagrangian correlations of small-scale turbulence 423

(3) Strain destruction

Figure 16. Qualitative description of the processes contributing to maintain strain and
enstrophy in equilibrium.

skewed in the opposite direction (figure 13a), indicating that ωωs is statistically
followed by larger ω2 and anticipated by larger s2.

A possible interpretation of the results in this sections is that strain production
statistically anticipates enstrophy production (as it was inferred from unconditioned
cross-correlation functions in figure 7d). The fact that ρs2,ωωs is relatively low is not
surprising, if we recall that the interaction between enstrophy and strain is strongly
dependent on the alignment between ω and the eigenvectors of the rate of strain
tensor λi (Lüthi et al. 2005 and Guala et al. 2005). Hence, on the one hand, we
infer that high magnitude of the rate of strain does not necessarily induce high
enstrophy production. On the other hand enstrophy production exhibits higher values
if conditioned on strain magnitude rather than on enstrophy magnitude (Tsinober
2001). It is important to note that the two statements are not in contradiction. In
fact, the rare events of high-strain and ω aligned with the eigenvector λ1 (associated
with the largest positive eigenvalue), contribute more significantly to positive ωiωj sij ,
compared to the statistically predominant situation of high-strain regions in which ω

is aligned with the eigenvector λ2 (associated with the intermediate eigenvalue).

3.5. Discussion

In this section we discuss our results and suggest a physical interpretation of
the investigated auto- and cross-correlation functions. We attempt to present a
qualitative picture in which we connect the different regions associated with the
imposed conditions with the various processes of strain and enstrophy dynamics.
Schematically, the picture is given in figure 16. The solid lines emphasize the direction
of growth of the quantity on the axis and the dashed lines emphasize their destruction.
Only four major ‘vectors’ are shown, each referring to one of the statistically detected
processes as we discuss below. We cannot claim that there are no other processes,
connecting the different situations shown in figure 16, but they are not detected by
the correlation analysis. For example, we are unable to conclude anything about
processes like vortex reconnection or vortex breakdown, since their occurrence is not
reflected in our results.
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We have indications that in low-strain–low-enstrophy regions, strain is the first
to increase through the known strain self-amplification process (Tsinober 2001): in
figures 5(d) and 7(d) we observe positive Dω2/Dt ‘anticipating’ positive Ds2/Dt .
In figure 10 in low-enstrophy–low-strain conditions s2 and −sij sjkski are positively
correlated similarly to the high-strain regions and definitely more correlated than
in high-enstrophy–low-strain regions. In addition in figure 12(c) in low-strain–low-
enstrophy regions the correlation curve is significantly skewed to positive time lags,
meaning that positive ωiωj sij ‘follows’ positive −sij sjkski . Enstrophy production is
the major process responsible for the evolution of high-strain–low-enstrophy regions
into high-strain–high-enstrophy regions. The differences are emphasized in figure 12
and figure 11(a–c). This is in agreement with the findings by Andreotti et al. (2001)
regarding the production of vorticity by shear instability in high-strain regions.
We find that the regions of high-strain–high-enstrophy (possibly related to shear
layers or vortex sheets) are the most important ones for the strain and vorticity
production processes. We observe that in these regions the production of strain and
the production of enstrophy are simultaneous processes (figure 12c) which are followed
by a significant growth of strain and enstrophy (figure 11). However we have some
indication that strain production becomes less efficient as in low-enstrophy regions.
In figures 10(a–c) and 11(d–f ), the peaks of the correlation coefficients ρs2,−sss and
ρ−sss,Ds2/Dt in the case of high-strain–high-enstrophy, are lower than in the case of
high-strain–low-enstrophy. The less efficient strain production combined with strong
and positive ωiωj sij would eventually lead to the reduction of Ds2/Dt as follows from
equation (1.1). Even without including the effect of other important processes (see
§ 1), this may explain why regions of high-strain–high-enstrophy statistically evolve
into regions of high-enstrophy–low-strain. This deduction is also in full agreement
with the results of Cao et al. (1999) and Brachet et al. (1992) among others, who
observed the formation of vortex filaments (worms) from vortex sheets (shear layers),
and with the fact that vortex filaments are known to be associated with relatively
long time scales compared to the time scale typical of high-strain regions (see for
example Jimenez & Wray (1998) and Vincent & Meneguzzi (1994) among others).

The regions of high enstrophy and low strain are very different from the others,
in the sense that: (i) positive enstrophy production is correlated with the depletion
of strain (figure 10, bottom), and with the increase of enstrophy (figure 11 top); (ii)
the correlations between strain and its production (figure 10top) and between strain
production and strain derivative (figure 11 bottom) vanish. In such regions, since
strain and its production are low and ω is known to be predominantly aligned with λ2

(Tsinober 2001), we may infer that ωiωj sij cannot balance the viscous destruction of
enstrophy (equation (1.2)). Thus high-enstrophy–low-strain regions will most probably
evolve into low-enstrophy–low-strain regions due to the effect of the viscous terms.

4. Conclusions
Lagrangian autocorrelation functions of the rate of strain, s2, enstrophy, ω2, their

production terms −sij sjkski , ωiωj sij and material derivatives, Ds2/Dt and Dω2/Dt ,
respectively, were calculated by using the experimental results of Lüthi et al. (2005)
in homogeneous turbulent flow with Reλ = 50. The main point of this contribution is
to provide a set of Lagrangian auto- and cross-correlation functions between strain,
enstrophy and the related terms from experimental data, with the main goal of
clarifying some aspects of the dynamics of s2 and ω2. Some issues related to the
use of different estimators in the computation of correlation functions have been
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thoroughly investigated. In particular, we have analysed the bias effects due to the
finite length of the trajectories, the normalization with different variance estimators,
and the time scales of the investigated processes.

The comparative behaviour of the strain and enstrophy autocorrelations is in
reasonable agreement with the results obtained from numerical simulations (Yeung
& Pope 1989; Yeung 2001; Mordant et al. 2004). Owing to the combined effect of
the biased estimator and the limited size of the samples (the trajectory time length is
not much larger than the time scale of the flow), the velocity and enstrophy integral
scales are underestimated in our process. Nevertheless, the integral time scales of
shorter-scale processes (such as strain and the production terms) agree well with the
previous results.

Through the conditioned autocorrelation functions we observe that the scales of
the investigated processes are quantitatively different depending on the magnitude
of strain and enstrophy. In particular it is shown that in high-strain–low-enstrophy
regions ωiωj sij becomes a shorter-scale process while in high-enstrophy–low-strain
regions it is −sij sjkski which displays a shorter time scale. In a similar manner,
cross-correlation functions between the various terms have been computed with and
without the conditions on the levels of strain and enstrophy.

Despite the underestimation of the skewness of the cross-correlation curve between
ω2 and s2, the level of the peak at zero time lag is obtained in agreement with the
results of Yeung & Pope (1989) and Mordant et al. (2004). The main result is that
ω2 and s2 do not grow and decay simultaneously, which is another indication that
non-local processes play a crucial role in small-scale dynamics. In particular it is
inferred that the statistical evolution of strain and enstrophy can be summarized
in a sequence of processes (e.g. figure 16) starting with the strain self-amplification
in low-strain–low-enstrophy regions, followed by enstrophy production and growth,
leading to the formation of high-strain–high-enstrophy regions. The depletion of both
strain and its production in parallel with the growth of enstrophy is related to the
evolution of these regions into high-enstrophy–low-strain regions or, in other words,
to the evolution of vortex sheets (shear layers) into vortex filaments. It is speculated
that these regions evolve into low-enstrophy–low-strain regions since the enstrophy
production, in the presence of low strain and preferential alignment between ω and
λ2, cannot balance the viscous destruction of enstrophy.

We must stress that the sequential picture of these processes, sketched in figure 16, is
distinctly qualitative, though inferred from statistical results, and should not be taken
literally. For example, one arrow in figure 16 does not mean that we can describe
the evolution of high-enstrophy–low-strain regions into a weak turbulence situation
as a one-step process. The sketch shows only the general trends and relations that
could be detected statistically by means of the correlation analysis. Nevertheless, if
we address the question of how in a stationary homogeneous turbulent flow 〈s2〉
and 〈ω2〉 become statistically steady, this statistical analysis suggests the qualitative
picture of a cyclic sequence of local and non-local processes of different Lagrangian
time scales. It is quite clear that several essential aspects of these processes require
more detailed study including the use of more sophisticated tools than those used
here. We acknowledge two major limitations in the present work: (i) the experiments
were performed in a low Reynolds number flow; (ii) the subsets of trajectories defined
as high-strain (enstrophy) are conditioned on a threshold value which is not large
enough to allow a discussion of intermittency effects. The second limitation is even
more restrictive for high Reynolds number flows, implying that the extension of the
presented results to such flows is questionable. One particular aspect is the difference
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between the time scales of strain and enstrophy. Numerical results from Yeung &
Pope (1989) and Yeung (2001) seemingly show that the ratio Ts2/Tω2 tends to unity
with increase of the Reynolds number. In this context the sequential picture of
different time-scale processes previously discussed might be revised for high Reynolds
number flows. It is however noteworthy that, in terms of Eulerian statistics, there
is a qualitative resemblance between the statistical property of ωiωj sij , sij sjkski , the
alignment between ω and the eigenvectors of the rate of strain tensor λi , and other
small-scale properties shown in Lüthi et al. (2005) and Guala et al. (2005), with the
corresponding statistics obtained at Reλ = 104 by Kholmyansky, Tsinober & Yorish
(2001). Also, in the present analysis we could not assess the pressure–strain interaction
and the viscous terms −sij ∂

2p/(∂xi∂xj ), νsij ∇2sij and νωi∇2ωi , which definitely deserve
further investigation, even at such low Reynolds number.
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Guala, M., Lüthi, B., Liberzon, A., Kinzelbach, W. & Tsinober, A. 2005 On the evolution
material lines and vorticity in homogeneous turbulence. J. Fluid Mech. 533, 339–359.

Jeong, E. & Girimaji, X. 2003 Velocity gradient dynamics in turbulence: effect of viscosity and
forcing. J. Theor. Comput. Fluid Dyn. 16, 421–432.

Jimenez, J. & Wray, A. A. 1998 On the characteristic of vortex filaments in isotropic turbulence.
J. Fluid Mech. 373, 255–285.

Kholmyansky, M., Tsinober, A. & Yorish, S. 2001 Velocity derivatives in the atmospheric surface
layer at Reλ = 104. Phys. Fluids 13, 311–314.
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